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Abstract

* This paper analyzes corporate bond valuation and
optimal call and default rules when interest rates and
firm value are stochastic.

 Exogenous models & Endogenous models

Exogenous- the corporate issuer may be forced to
default when firm value or asset cash flow fall too low.

Endogenous- suppose that no such covenants exist.
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Interest rate and firm value
specifications

e Suppose investors can trade continuously in a
complete, frictionless, arbitrage-free financial

market.

* There exists an equivalent martingale measure
P under which the expected rate of return on
all assets at time t is equal to 7%.



Interest rate and firm value
specifications

 The interest rate is a nonnegative one-factor
diffusion described by the equation

dr, = u(r,, t)dt+o(r,, 1) dZ,

where Z is a Brownian motion under % and w and ¢ are continuous and
satisfy Lipschitz and linear growth conditions.



Lipschitz and linear growth conditions

 For some constant L, u and o satisfy

w(x, 1) —p(y, | +|o(x, 1) —o(y. 1) <Ljx—y
(D) +lo(x, )| < L(1+x])

»

for all x,y,t € RT.

Next, consider a firm with a single bond outstanding. The bond has a fixed
continuous coupon ¢ and maturity 7. Without loss of generality, suppose the
par value of the bond is one, and all other values are in multiples of this par

value.



Interest rate and firm value
specifications

 The value of the firm is equal to the value of its
assets, V, independent of its capital structure.

 Firm value evolves according to the equation

dv,
V,

= (r,—7y,)dr+ (brdﬁ/rs

where W is a Brownian motion under % with d(f/f/, Z)r = p,dt and vy, > 0,
¢, > 0, and p, € (-1, 1) are deterministic functions of time.



Option and bond valuation

e Pure callable bond

Pc =P — fc
e Pure defaultable bond
Pp =P — fp

e Both callable and defaultable bond
Pep = P — fCD



Option and bond valuation

e The filtration {F;} generated by the paths of
the interest rate and firm value.

 The optimal option value at an arbitrary time t
in the life of the option is

(= sup E[B,.(P.—k(V,, 7)) |7,].

[



Option and bond valuation

 The optimal option value at an arbitrary time t
in the life of the option is

gr = Sup E[Br.T(PT_K(VT’T))+|?Ff]’

t<t<T
where E |-] denotes the expectation under the measure %, the strike price
k(v,t) =k, v, or k, Av,
depending on the bond in question, and the discount factor

[T r.ds
BI.T:€ .




Option and bond valuation

 Under the Markov interest rate specification, the
host bond price

- T
Pr — E|:C[ Br..sds + 1 '5I.T | 7rj|
f
= pyu(r,1)

for some function p,: 27 x [0, T] - X.

Py (-, t) is strictly decreasing and continuous function

(Back)




Option and bond valuation

given P, = p, and V, = v,
(= f(p.v.1)
for some continuous function f: A7 x R x [0, T| — R, satisfying
f(p.v.1) = (p—r(v,0))".

Krylov (1980)

Furthermore, the optimal stopping time is

T=inf{r >0: f(P,,V,,t)=(P,—k(V,, 1))"}.



Theorem 1.

 The following properties hold for all three embedded
options.

L pY>p@ = f(p' v 0> f(p?,v,0).
2. v <@ = F(p.vV, 1) > F(p,v?, 1)

| 0D oD | . .
3. p)#£pd = [ ;f}_ﬁf{j L1 < 1. (Call delta inequality)

_ g (2) £y (1) , . .
4. ) £ = L[ U‘(g_'ﬁ,’;‘" D > 1. (Put delta inequality)




No-Crossing Property

(1) {(2) o oy e o
Let (r_- ) . (r,- ) denote two short rate processes with the same diffusion process but different
>t ot

I: -

T l l‘z:‘ . . " \ L d
initial rates, r,”" < r,”’. The no-crossing property proved in Karatzas and Shreve (1987) demonstrates

that



Corollary & Lemma

t
o Lletf; = By = e~ Jo Tsds

1 2 : : e
Corollary 1. Let BE " and Bf ) be the discount factor processes corresponding to initial interest

(1 (2)

rates ry and ry~, respectively. Then

f’é]) < réz) = BV > B, P—as.¥0<t< oo. (23)

Proof. From Proposition 2, we have rV) <@V 0 <5 <t The paths of r'V' and r® are
continuous, so there exists a neighborhood around 7 =0 on which r'" < r®. Consequently,

. (1 o (2
€_--'ié r} )ds - e—j['; rg )ds. .



Corollary & Lemma

The monotonicity of the host bond price in level of the interest rate implies:
Corollary 2. ré” < réi} = P,“} > P,(z}, P—a.s. Y0 <tr<T.
Combining Corollaries 1 and 2 yields:

Corollary 3. " <P = VPV =~ pPPP P —as.VO<t<T.



Corollary & Lemma

Under the firm value specification

" " - 7 " —
V=V, o6 rudu=J§ vu du—5 [ ¢ du+ [ ¢y dW,
r -

It follows that:

Corollary 4. 1" <P = v <v©?, P—a.s.V0O<r<T.



Corollary & Lemma

Lemma 1. ré” < f’éﬁ) = E[B?)Pf(z) —B?)P;“}] > Péz] —Pé”, VOo<r<T.

Proof. Define the @—martingale BP* by
N T
Brpr* = E|:C [ Bs ds+1 'BT|gr:|- VO =I= I.
Jo
Note that

N T
BrPr=E|:C[ Bsd~5'+1'BT|gr:|ﬂ
Jt

SO

t
BIPI* =BIP;‘+C [ BS dS. plO)
Jo -



Corollary & Lemma

Rearranging,

B,P,— P, = B,P" —c [ B,di—P,

E(B, P~ ——E[ [Bds}

Corollary 1 implies that

A frra]eil o]

and the result follows.



Proof of Theorem 1.

. p">pP = f(p"v.1) > f(p? v 1)

P“] - ]n'::] .1|I < ;'1:]

Let 7 be the optimal stopping time given the state at time t is P, = p?
PP v 1) = F(p2.v.1) = E[BO(PY (V. 7)) = BA(PD = (V. 7)) "[7] >0,

(n (2) 2
<@ = B s B and PO > PO VO > y0)



Proof of Theorem 1.

2. v <v® = fF(p,v'V, )= f(p, v, 0).

Consider the cases k(V,. 1) =V, and k(V,, 1) =k, AV,
By corollary 4, VI < V@ Vs e [t,T]. 2 k(VIV, 1) < k(VP, 1)

The feasibility of 7 as a stopping time for the state P, = p and V, = v'" implies that
Fp oW 0= f(pv® 1) = E[B, (P, —x(V", 7))

B (P~ (V2. 7)) 15 0.

_'_



Proof of Theorem 1.

| D o =7 (pD . .
3. p£p® = [ ’;’(g_ﬁ((ﬁ 20 < 1. (Call delta inequality)

We let p'" > p@ ) < @ and prove that f(p®,v,1)— f(p'",v, 1) = p?® —pW»

Let 7 be the optimal stopping time for p'"
f(p?,v,0)=f(p®,v,1)
> E[B2(P® —k(V®, 7)) = B (PY —k(V", 7)1 (6D >k, 0} € PO > 1, )
= E{[B2(P2 - (V2. 7)" = BPO = k(V. )] Lt (t0.)) 7
[[B‘ WP —k(VP, 7)) = BU(PY —k(VED, 7)) 1 P m.__))l-'}',]
I[ﬁ‘ A — gD ](,,g_n__“,\_(‘.rm_._))l'f,] +EI[BLI.1K Ve, 2)— BflK(V,.':’.r)]-I(p:[‘.,___‘x(‘_f(.,‘?))|':7,]
> E{[B2P® - B)PO]- Lo (v, ,))l-'?}
. E[g0P® _ g p0i3,] BDp® _ p@p® <

- pilb pll].



Proof of Theorem 1.

@ = f(p.oD . .
4. v £ @ = L L ) > _1. (Put delta inequality)

We let v'? > v and prove that f(p, v®, 1) — f(p, vV, 1) > v) —v@ Let 7 be the optimal
stopping time for v, Then 7 is a feasible stopping time for v,

P 1) = f(pov.1) = E[B, (P = (V. 7))
=B (P (V0. 7)) |7]

= | (B (P = (V. 7)) = By (P, —k(VI. 7))
(0, ))' |
EHB”( = (V)= (= k(110 7))
P >K v() }
l BM V(') ) K(VT(‘),T))]-l(PTM(V;])!‘_))H—r}
E[B,..(k(VD, 7) = k(V2, 7))|F,]

E
E[B (V" = V)I7]

— e*.f; Yu du(v(l) _ U(3))

Q

| \/

v

> o) — @),



Proposition 1. The values of the different embedded options relate as fol-
lows.

fC(ps v, [)va(pa v, [) SfCD(ps v, [) - fC(pa v, [)+fD(p9 v, [)-

Proof of Proposition 1. The first inequality is obvious. We establish the second inequality as
follows.

fep(povit) = sup E[B, (P, —k, AV.)"|F,]

1<t<T

= sup E[B, (P, — k)" v (P.—V,)")|]

1<r<T
< sup E[B,.((P,—k)" +(P,—V,)")|F]
1<r<T

< sup E[B, (P, —k)"|F,]+ sup E[B](P,—V,)"|]

t<r<T t<t<T

— fC(ps v, t)"_fD(ps v, t)'



Optimal Call and Default Policies

Theorem 2. Let t € |0,T) and v > 0. If there is any bond price p such
that it is optimal to exercise the embedded option at time t given P, = p and
V., =, then there exists a critical bond price b(v, t) > k(v, t) such that it is
optimal to exercise the option if and only if p > b(v, t).

For the proofs of Theorems 2—4, note that the continuation region for each option is the open
set

U={(p.v.1) e R" x R* x [0, T]: f(p.v.1) > (p—r(v,1))*"}.

In addition, note that for all 1 € [0,T), f(p,v, 1) > 0.



Theorem 2.

Proof of Theorem 2.  Suppose it is optimal to continue at p, and p, > p,. We show that it is
then optimal to continue at p,. Using the call delta inequality, we have

f(posv,t) = f(prov. )+ py=py > (py —k(0, 1) +py—py = py— k(v 1).
In addition, f(p,,v,t) > 0, so
f(py.v.1) > (py—k(v.1))".
Let b(v, ) be the supremum of p such that (p,v,f) € U. The point (b(v, ), v, ) cannot

lie in U because U is open, so f(b(v,t),v,t) =b(v,t)—k(v,t) > 0, which implies b(v, ) >
K(v,1). N



Theorem 3. Lett€|0,T) and p > 0.

1. For the pure defaultable bond, there exists a critical firm value v,(p,t) <
p such that, at time t, given P, = p and V, = v, it is optimal to default
if and only if v <v,(p,1).

2. For the callable defaultable bond, there exists a critical firm value
vep(ps t), satisfying vep(p,t) < k, and vqp(p,t) < p, such that, at
time t, given P, = p and V, = v, it is optimal to default if and only
if v<vqp(p,t). In addition, if there exists any firm value v at which it
is optimal to call, then there exists a critical firm value v ,(p,t) > k,
such that it is optimal to call if and only if v=> v.p(p, 1).



Proof of Theorem 3. I. Note that it must be optimal to default at v = 0. Suppose it is
optimal to continue at v, and v, < v,. We show that it is then optimal to continue at v,.
Using the put delta inequality,

f(p.vy,t)=f(p,v,1)+v,—v, > (p_v1)++vl — U, = P— 1y, (58)

and thus f(p,v,.1) > (p—v,)". Let v, (p, t) be the infimum of v such that (p, v, 1) € U.
Since f(p,vp(p,t),1) >0, vy(p, 1) < p.



2. First, suppose it is optimal not to default at v, and v, < v,. We show that it is then also
optimal not to default at v,. From the put delta inequality,

f(p.vy 1) = f(p.v, 1) +v, —v, > (p_vl/\kf)++vl_v2
zp_vg,

and thus f(p,v,,1) > (p—1v,)".
Note that it must be optimal to default at v = 0. Therefore, there exists a critical value
Vep(p. 1) such that it is optimal to default Yv, v < v.p(p, 1).

Next, suppose it is optimal to call at v,, and v, < v,. We show that then it is then optimal
to call at v,. Note that k, < v, must hold. Now, on one hand, f(p,v,,t) > p—k, Av, =
p —k,. On the other hand, from part 2 of Theorem 1, f(p,v,, 1) < f(p,v,,t) =p—k,.
Let v, (p, t) > k, be the minumum of v such that it is optimal to call at (p, v, 1). |
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Theorem 4. For eacht €|0,T),
l. v, <v, = bpy(v,,t) <bp(v,,1).
2. py < py=>vp(pis 1) S vp(pas 1),
V) <V, <k, = bep(vy, 1) < bep(v,, 1),
k., <v, <V, = brp(v,,1) = bp(vs, 1)
v<k, = bp(v,1)>b,(v,1).
v >k, = bp(v,t) > b-(v,1).

N oW



Proof of Theorem 4. 1. Suppose 0 < p < by (v,,t). Then p < b,(v,, t) as well:
J(Pov ) = f(pvp D) +0, =0, > p—0, +0, — 0, =P —,.
2. Suppose v > v,(p,, t). Then v > v, (p,, ) as well:

fpiv, 1) = f(pr v, 1) +p—py>py—V+p, —py = p —0.

3. The proof is essentially the same as that in part 1.
4. Suppose 0 < p < bep(v,,1). Then p < bop(v,, 1) as well:

f(pov 1) = f(p.vy, 1) > g(pvy.t) =(p—k,)" = g(p.v,.1).

5. If p<bp(v,t), then frp(p,v.t) = fr(p,v,t) >p—v=p—VvAKk,, s0 p < b-p(v,t).
6. If p<bq(v,t), then fp(p,v,t) > fe(p,t)>p—k, =p—vAk,, sop<bq(v,t). H

(Th.1)



Pure Convertible Bond

* To keep problems simple, we follow Acharya

and Carpenter(2002) by assuming the market
value of the firm

I;‘ — ;’\-’TC (:'ft 1 A’T{] S ;D C

 The outstanding shares of the stock increase

by
AN(= nN¢)



Pure Convertible Bond

* |gnoring the effects of tax benefits and
bankruptcy cost, after conversion:

Vi = (No + AN)SHC,

 The after-conversion stock price

9 AC _ I}
t A-"T{] + AN .




Pure Convertible Bond

* The value to convert a bond into n shares of

stocks is o 1
nSAC _ Vi = 2V,
1.5¢ No - AN t

e Pure convertible bond
Ppc = Pt + fpc
e The optimal stopping time
T =1inf{t = 0: f(P,,V,, t) = (zV, — P,)"}



DCC Bond

Corporate bonds

(Issuer) (Buyer)

CCallable> Putable
(defaultable>  Convertible>

-




Numerical Methods

e Firm value — BTT tree

* |Interest rate — Hull white tree model

e Backward induction



Numerical Methods

e Value= max(min(cont ,min(Vt,K)-Pt) ,z*Vt-Pt);
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